Мир Записей

World Records
Приветствую Вас Гость | RSS |Пятница, 13.06.2025, 23:23



                                                                      
Авторизация\ЛК
Гость


Группа:
Незнакомцы
Время:23:23

Гость, мы рады вас видеть. Пожалуйста зарегистрируйтесь или авторизуйтесь!


Категории раздела
Оборудование [28]
Технологии [8]

Опрос
Оцените сайт
Всего ответов: 11456

Партнеры
  • Armada Music
  • Дизайн студия Design-Web
  • Каталог сайтов Всего.ру

  • Бесплатная кредитка

    Интернет реклама УБС

    Статистика

    Реклама Admitad

    Облако тегов

    Ето интересно

    Последние комментарии

    Главная » Статьи » Промышленность » Оборудование [ Добавить статью ]

    Разрабатываем и собираем обнаружители радиомикрофонов часть 2

    Схема № 7. Низкочастотный поисковый индикатор может быть использован для обнаружения устройств, передающих информацию по проводам. Эти устройства используют приемники сигналов с проводной линии, имеющие диапазон частот, лежащий между звуковыми и радиочастотами. Высшую частоту диапазона такого приемника разумно ограничить величиной 100 кГц. Для этого есть несколько причин:

    во-первых, хорошие сканирующие приемники имеют возможность работать в ЧМ, начиная с этой частоты;

    во-вторых, при передаче сигнала по проводам ЧМ является наиболее помехозащищенным видом модуляции;

    в-третьих, в диапазоне 30—100 кГц самыми дальнобойными являются именно низкие частоты.

    Причем передача сигнала на частотах 100 кГц и выше имеет заметное радиоизлучение и может быть обнаружена обычным радиоприемником с диапазоном длинных и средних волн.

    Схема низкочастотного индикатора (рис. 4.7) представляет собой ЧМ приемник диапазона 25—125 кГц, адаптированный под задачу обнаружения частотно-модулированных сигналов в любой линии. Исследуемая линия подключается через входной трансформатор Т1. Он предназначен для гальванической развязки индикатора от линии в целях защиты от поражения электрическим током.

    После трансформатора включен полосовой фильтр с частотами среза 30—100 кГц. Фильтр состоит из последовательно включенных фильтра высоких частот на С2, СЗ, L1 и фильтра низких частот на С4, С5, L2. Фильтры выполнены на пассивных элементах, так как в исследуемых линиях может присутствовать высокое переменное напряжение других частот (как, например, в электрической сети).


     

    Рис. 4.7. Принципиальная схема обнаружителя низкочастотных сигналов


    Далее вся выделенная полоса частот усиливается внутренним усилителем-ограничителем микросхемы DA1. Цепочка VD1, VD2, С6 служит для защиты микросхемы от высоковольтных импульсов. Усиленный и ограниченный сигнал демодулируется частотным детектором с ФАПЧ. Петля фазовой автоподстройки частоты включает генератор управляемый напряжением из состава микросхемы DD1 и фазовый детектор из состава микросхемы DA1.

    С выхода 10 DA1 через пропорционально-интегрирующий фильтр на R12, R15, С17 сигнал управления поступает на вход ГУНа. Высокочастотный сигнал ГУНа с выхода 4 DD1 через элементы R4, R11, С13 подается на вход 9 фазового детектора из состава DA1. Входной высокочастотный сигнал подключен к фазовому детектору внутренними цепями DA1.

    Примечание

    Фазовые детекторы из состава DD1 не используются при демодуляции звука, один из них только лишь управляет светодиодом индикации VD3 через повторитель на транзисторе VT3.Использование фазового детектора микросхемы DA1 в петле ФАПЧ позволяет получить более качественное детектирование звука.


    Демодулированный звуковой сигнал через внутренний истоковый повторитель (выход 10) микросхемы DD1 поступает на усилитель низкой частоты, выполненный на ОУ DA3 и транзисторах VT1, VT2. Отношение резисторов R18, R14 определяет его величину усиления. К выходу УНЧ подключен малогабаритный динамик ВА1. Частотная селекция входного сигнала осуществляется ФАПЧ демодулятором, его центральная частота перестраивается переменным резистором R2 от 25 до 125 кГц.

    В связи с тем, что усилению подвергается вся рабочая полоса частот, на выходе УНЧ всегда присутствует шум — сильный при отсутствии сигнала, слабый при сильном входном сигнале. Это способствует образованию обратной связи при присутствии передатчика.

    Индикаторный светодиод VD3 беспорядочно мигает в отсутствии сигнала. При обнаружении сигнала переходит через потушенное и зажженное состояние при перестройке по частоте резистором R2. Или остается в одном из этих состояний, если петля ФАПЧ удерживает настройку при сильном сигнале.

    Индикатор обнаруживает на всех 8 км его дальности действия. Индикатор также позволяет определять присутствие видеосигнала в линии, цифрового сигнала с частотной модуляцией. Исследуемая линия может быть любой двухпроводной линией (телефонная линия, линия компьютерной сети, линия электроснабжения 220 В и т. п.). Ограничение накладывает величина пробивного напряжения, определяемая качеством изоляции между обмотками трансформатора Т1 и допустимым напряжением конденсатора С1.

    Требования к элементам схемы небольшие: конденсатор С1 обязательно должен быть высоковольтным, С2—С5 составляются из нескольких, имеющих стандартные номиналы.

    Трансформатор Т1 и катушки L1, L2 намотаны на ферритовых кольцах 20x10x5 проницаемостью 2000НН. Т1 имеет по 70 витков в каждой обмотке, L1 — 24 витка, L2 — 27 витков.

    Обмотки трансформатора изолированы друг от друга слоем лакотканевой или фторопластовой изоляции. При желании намоточные данные катушек и трансформатора можно пересчитать для сердечников меньшего размера. Индикатор питается от девятивольтовой батареи через интегральный стабилизатор DA2.

    Настройка индикатора сводится к установке подстроенным резистором R3 меандра на выводе 2 DD1 и резистором R11 наименее искаженного звукового сигнала на выходе УНЧ. Это лучше сделать при наличии входного сигналов.


    Схема № 8. Этот прибор можно назвать детектором радиоволн и предназначен для поиска микропередатчиков. Он представляет собой звуковой и световой сигнализатор наличия радиочастотных излучений. Прибор имеет высокую чувствительность в полосе частот до 1 ГГц. Например, «жучок» с излучаемой мощностью 1,5 мВт (выходной каскад на одном маломощном транзисторе) можно обнаружить с расстояния около 10 см.

    Конструкция прибора проста и доступна для повторения даже радиолюбителям с небольшим опытом изготовления электронных устройств. В нем использованы доступные компоненты. При этом потребительские свойства этого сигнализатора весьма неплохие. Он имеет малые размеры и массу, прост в эксплуатации: единственный орган управления — выключатель питания.

    Принципиальная схема сигнализатора показана на рис. 4.8,а. Расположение элементов и печатная плата приводятся на рис. 4.8,б.


     

     

    Рис. 4.8. Детектор радиоволн:

    а—принципиальная схема; б—печатная плата и расположение элементов


    При приближении антенны WA1 к микропередатчику в ней наводится высокочастотное напряжение, которое через конденсатор С1 поступает на вход УРЧ (транзистор VT1). Емкость конденсатора С1 определяет нижнюю границу принимаемого диапазона частот. Ее подбирают такой, чтобы индикатор не реагировал на бытовые низкочастотные помехи от электродвигателей, тиристорных регуляторов напряжения, ГСП магнитофонов и т. п.

    С выхода УРЧ сигнал поступает на диодный детектор VD1.

    Через фильтр С4 L1 и резистор R6 постоянная составляющая продетектированного сигнала поступает на вход усилителя постоянного тока (транзисторы VT2, VT3).

    Резистор R6 несколько снижает чувствительность индикатора, но он необходим для того, чтобы избежать резкого повышения чувствительности прибора на частоте резонанса контура С4 L1 (около 50 кГц).

    Усилитель постоянного тока управляет работой мультивибратора на транзисторах VT4 и VT5. К коллекторным цепям транзисторов VT4, VT5 подключен пьезоизлучатель ZQ1, который преобразует электрические колебания, вырабатываемые мультивибратором, в звук. При работе мультивибратора, кроме того, светится и светодиод HL1.

    Примечание.

    Такое включение излучателя повышает громкость его звучания.


    Чем больше мощность сигнала от «жучка», тем больше ток через транзистор VT3 и тем выше частота звукового сигнала и его громкость, а также интенсивность свечения светодиода HL1. Перемещая сигнализатор, ищут его положение, при котором максимальны громкость сигнала и яркость светодиода.

    Затем уже в «ближней зоне» проводят визуальный поиск местонахождения подслушивающего устройства.

    На диод VD1 через резистор R4 поступает напряжение смещения со стабилизатора напряжения R5, VD6, которое приоткрывает диод VD1 и транзистор VT2. Это повышает чувствительность детектора к малым уровням ВЧ сигналов.

    Совет.

    Резистор R4 нужно подбирать так, чтобы светозвуковой сигнализатор находился на грани срабатывания сигнализатора.


    Как следствие, даже очень небольшая добавка напряжения, возникающая при детектировании исследуемого сигнала, открывает транзисторы VT2, VT3, запуская мультивибратор.


    Примечание.

    Недостаток такого решения — заметная термочувствительность сигнализатора. Ее можно устранить, подобрав R4 так, чтобы сигнализатор не срабатывал самопроизвольно в выбранном диапазоне температуры.


    Облегчит эту процедуру применение в качестве VT2 транзистора с очень малым обратным током.

    Диод VD1 можно заменить на КД503Б, КД509А, КД512А, КД407А или КД409А. Стабилитрон VD3 — любой с напряжением стабилизации 5–7 В. Транзистор VT1 — КТ368 с любым буквенным индексом в любом корпусе либо другой высокочастотный, например, КТ3101А-2, КТ3120А, КТ3124.

    Транзистор VT2 — КТ3102 с индексами Г, Е. Заменять его другими не стоит, так как он имеет очень малый начальный ток коллектор-эмиттер — менее 0,05 мкА. Транзистор VT3 можно заменить на КТ3107 с индексами К, Д.

    Вместо транзисторов VT4 и VT5 допускается использовать любые кремниевые маломощные транзисторы соответствующей структуры с подходящей цоколевкой. Лишь бы обратный ток коллектора был достаточно мал, чтобы мультивибратор не самовозбуждался. По этой причине нельзя применять германиевые транзисторы. Чем больше коэффициент передачи тока каждого транзистора, тем выше чувствительность всего устройства.

    В качестве пьезоэлемента использован пьезоизлучатель ZQ1, например, от электронных часов «Монтана», но здесь подойдут и любые другие. Дроссель L1 должен иметь индуктивность 1–2 мГн. Он содержит 180 витков провода ПЭЛШО-ОД2 на кольце от импульсного трансформатора ТИ-18. Выключатель SA1 — ПД9-2. Антенна WA1 — телескопическая от импортной магнитолы общей длиной 32 см.

    Совет.

    Слишком длинную антенну использовать не следует.


    Наладку сигнализатора начинают с установки напряжения смещения на диоде VD1. Для этого конденсатор СЗ нужно временно отключить. Вместо резистора R4 временно устанавливают переменный сопротивлением 560 кОм. Вращая его движок, добиваются исчезновения звука.

    Если теперь поднести устройство к лампе накаливания или вынести на солнечный свет, то сигнализатор начнет слабо пищать, набирая громкость с нагревом. Затем измеряют сопротивление переменного резистора и устанавливают резистор R4 с сопротивлением, в полтора раза большим. Это обеспечит работоспособность сигнализатора радиоизлучения в приемлемом диапазоне температуры. Усиление УРЧ регулируют подбором резистора R2.


    Схема № 9.Индикаторы излучения рассматриваются на

    http://cadlab.ru/content/view/455/31/1/3/.

    В индикаторе используется диод с барьером Шоттки КД514. При его монтаже с целью исключения выхода его из строя нужно применять защиту от статического электричества.

    В простейшем случае антистатический браслет может быть изготовлен из металлического браслета для часов, к которому с помощью зажима «крокодил» прикрепляется резистор номиналом 100 кОм…1 МОм. Второй конец резистора соединяется с контуром заземления или с водопроводной трубой холодной воды. Корпус паяльника также необходимо заземлить.

    Настройка ВЧ-индикатора. При подготовке детектора к работе установите движок подстроенного резистора R9 в крайнее левое положение (максимальная чувствительность) и включите питание. Вращая ручку переменного резистора R10, нужно добиться генерации самого низкочастотного тона в отсутствие электромагнитного излучения.

    Теперь можно обследовать помещение. При приближении к источнику электромагнитного поля частота тона будет повышаться. При перегрузке детектора резистором R9 уменьшите его чувствительность. Громкость сигнала можно изменить увеличением или уменьшением номинала резистора R26.

    В проверяемом помещении необходимо выключить все известные источники электромагнитного излучения: люминесцентные лампы, компьютеры, радиоприемники и все виды телефонов. В противном случае они затруднят поиск «жучков».

    С помощью индикатора можно обнаружить передающие устройства, работающие в диапазоне 5—300 МГц. Например, передатчик мощностью 10 мВт можно обнаружить на расстоянии 20–25 см.

    Технические характеристики:

    — напряжение питания, В…9;

    — ток потребления, мА…18–30;

    — диапазон рабочих частот, МГц… 5—300.

    Электрическая схема индикатора приведена на рис. 4.9.

    Индикатор ВЧ-излучения функционально состоит из пяти каскадов. Первый каскад — широкополосный усилитель высокой частоты собранный по схеме с коллекторной стабилизацией рабочей точки на транзисторе VT1. Второй каскад — детектор на диоде Шоттки VD1 Третий — компаратор на операционном усилителе ОУ1 из состава ИС DA1.

    На ОУ2—ОУ4 и VT3 собран четвертый каскад — перестраиваемые генератор низкой частоты, управляемый напряжением (ГУН).

    ГУН выполнен по классической схеме, содержащей каскады интегратора, компаратора и разрядного транзистора.


     
     

    Рис. 4.9. Электрическая схема индикатора ВЧ излучения


    Интегратор собран на ОУЗ, компаратор — на ОУ4. Скорость заряда конденсатора С10 зависит от величины напряжения на входе ГУН (точка соединения резисторов R16 и R17).

    Как только напряжение на выходе интегратора достигает порога срабатывания компаратора ОУ4, открывается разрядный транзистор VT3. После разряда конденсатора С10 цикл начинается заново.

    На ОУ2 собран буферный каскад для предотвращения влияния входной цепи ключевого усилителя звуковой частоты, собранного на транзисторе VT2 (пятый каскад), на стабильность работы ГУН.

    Внимание.

    В индикаторе используется диод с барьером Шоттки КД514. При его монтаже с целью исключения выхода его из строя нужно применять защиту от статического электричества.


    В простейшем случае антистатический браслет может быть изготовлен из металлического браслета для часов, к которому с помощью зажима «крокодил» прикрепляется резистор номиналом 100 кОм…1 МОм. Второй конец резистора соединяется с контуром заземления или с водопроводной трубой холодной воды. Корпус паяльника также необходимо заземлить.

    Совет.

    В проверяемом помещении необходимо выключить все известные источники электромагнитного излучения: люминесцентные лампы, компьютеры, радиоприемники и все виды телефонов. В противном случае они затруднят поиск «жучков».


    Настройка ВЧ-индикатора. При подготовке детектора к работе установите движок подстроечного резистора R9 в крайнее левое положение (максимальная чувствительность) и включите питание. Вращая ручку переменного резистора R10, нужно добиться генерации самого низкочастотного тона в отсутствие электромагнитного излучения.

    Теперь можно обследовать помещение. При приближении к источнику электромагнитного поля частота тона будет повышаться.

    Совет.

    При перегрузке детектора резистором R9 уменьшите его чувствительность.

    Громкость сигнала можно изменить увеличением или уменьшением номинала резистора R26.


    Схема № 10. Индикатор излучения сотового телефона в диапазоне СВЧ рассмотрен на http://radiomaster.com.ua/index.php?newsid=164. В отличие от описанного в журнале «Радио» аналогичного устройства (Виноградов Ю. Детектор излучения сотового телефона. — Радио, 2004, № 2, с. 43), предлагаемый индикатор имеет значительно больший радиус действия, достигающий 10 м. Схема устройства показана на рис. 4.10. Прием сигнала ведется на широкополосную полуволновую антенну, состоящую из двух вибраторов W1 и W2.

    Прибор выполнен по схеме приемника прямого усиления и содержит усилитель радиочастоты (УРЧ), детектор и звуковой индикатор. Сигнал, наведенный в приемной антенне, усиливается УВЧ и поступает на детектор. Продетектированный сигнал открывает электронный ключ, собранный на транзисторе VT2, а он, в свою очередь, включает звуковой сигнализатор НА1 — зазвучит сигнал.


     

    Рис. 4.10. Индикатор излучения сотового телефона в диапазоне СВЧ


    С помощью индикатора удается определять и режимы работы сотового телефона. Когда сотовый телефон входит в сеть, индикатор подает короткие звуковые сигналы, а при вызове абонента и при разговоре с ним звуковой сигнал звучит непрерывно.


    Схема № 11. Радиочастотный искатель подслушивающих устройств рассмотрен на http://www.irls.narod.ru/sig/isk/abag04.htm. Сегодня все чаще можно столкнуться с применением в различных целях радиомикрофонов и телефонных радиопрослушивающих устройств. Иногда необходима уверенность в том, что разговор в квартире или офисе не прослушивается. Обычно радиоподслушивающие устройства («жучки») излучают на одной частоте в диапазоне 30—500 МГц небольшую мощность (до 5 мВт).

    Иногда такие устройства работают в ждущем режиме: включаются на передачу при наличии шума в помещении (что обеспечивает экономичность расходования энергии элементов питания) или же при снятии телефонной трубки.

    Простейшее устройство, которое способно помочь в обнаружении подслушивающих устройств, приведено на рис. 4.11.

    Схема является широкополосным мостовым детектором ВЧ напряжения. Он перекрывает диапазон частот 1—200 МГц (при использовании в качестве D01—D06 диодов СВЧ диапазона рабочая полоса может быть расширена) и позволяет обнаруживать «жучки» на расстоянии примерно 0,5–1 м (это зависит от мощности передатчика).

    Примечание.

    Известно, что измерение ВЧ напряжений с уровнем меньше 0,5 В затруднено тем, что уже при 0,2–0,3 В все полупроводниковые диоды при детектировании становятся неэффективны из-за особенности их вольтамперной характеристики.


     

    Рис. 4.11. Радиочастотный искатель подслушивающих устройств.


    В данной схеме применен известный способ измерения малых переменных напряжений с использованием сбалансированного диодно-резистивного моста. Небольшой ток, протекающий через диоды D3, D4, улучшает условия детектирования (повышает чувствительность) и позволяет отодвинуть нижнюю границу уровня измеряемых напряжений до 20 мВ при равномерной амплитудно-частотной характеристике.

    Диоды D5, D6 образуют второе плечо моста и обеспечивают термостабилизацию схемы. На элементах микросхемы U1.2—U1.4 собраны трехуровневые компараторы, к выходам которых подключены светодиодные индикаторы HL1—HL3.

    Диоды Dl, D2 применены как стабилизаторы напряжения 1,4 В, что необходимо для устойчивой работы схемы в широком диапазоне изменения питающих напряжений.

    Примечание.

    Применение устройства требует определенных навыков, так как схема довольно чувствительна и способна улавливать вблизи любые радиоизлучения, например, работу гетеродина приемника или телевизора, а также вторичное переизлучение токопроводящими поверхностями.


    Для облегчения поиска «жучка» используют сменные антенные штыри с разной длиной, которые позволяют снизить чувствительность схемы. Например, возможно применение сменных штырей длиной 400–700—1200 (мм).

    При использовании устройства, после его включения, необходимо резистором R2 добиться свечения индикатора HL3. Этим устанавливается уровень начальной чувствительности относительно фона. При поднесении антенны к источнику радиоизлучения должны начинать светиться светодиоды HL2 и HL1 по мере увеличения амплитуды принятого сигнала.

    Регулировку схемы подстроечным резистором R9 выполняют один раз (при первоначальной настройке устройства от него зависит уровень порогов чувствительности компараторов). Схема сохраняет работоспособность при изменении питания от 6 до 10 В.



    Категория: Оборудование | Добавил: Admin (12.06.2013)
    Просмотров: 862 | Комментарии: 2 | Теги: собираем обнаружители, радиомикрафоны, разработка | Рейтинг: 0.0/0
    Всего комментариев: 0
    ComForm">
    avatar
    Поиск

    Новое на форуме

    Последние новости

    World-records - Украина © 2025 | Разработка дизайна Desing Studio